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a b s t r a c t

An improved auto-tuning scheme is proposed for Ziegler–Nichols (ZN) tuned PID controllers (ZNPIDs),
which usually provide excessively large overshoots, not tolerable in most of the situations, for high-order
and nonlinear processes. To overcome this limitation ZNPIDs are upgraded by some easily interpretable
heuristic rules through an online gain modifying factor defined on the instantaneous process states. This
study is an extension of our earlier work [Mudi RK., Dey C. Lee TT. An improved auto-tuning scheme for PI
controllers. ISA Trans 2008; 47: 45–52] to ZNPIDs, therebymaking the scheme suitable for awide range of
processes and more generalized too. The proposed augmented ZNPID (AZNPID) is tested on various high-
order linear and nonlinear dead-time processes with improved performance over ZNPID, refined ZNPID
(RZNPID), and other schemes reported in the literature. Stability issues are addressed for linear processes.
Robust performance of AZNPID is observed while changing its tunable parameters as well as the process
dead-time. The proposed scheme is also implemented on a real time servo-based position control system.

© 2009 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

In spite of various advancements in process control techniques,
up until now, PID controllers have been very popular in industrial
close-loop control [1–4]. An extensive survey on the regulatory
controllers used in refinery, chemical, pulp, and paper industries
reveals that 97% of them are of PID structure; even sophisticated
control techniques also embed PID algorithms at the lowest
level [3]. Simplicity, applicability, and ease of implementation have
led to its wide acceptance [4]. But for many of them, performance
is quite poor due to, among other factors, inadequate tuning of the
controller parameters [5–7]. Though many tuning methods have
been proposed for PID controllers over the past half century [8], so
far no scheme has replaced the simple ZN tuning rules [9] in terms
of familiarity and ease of use to start with [4]. The close-loop ZN
tuning [9] is one of themost popular methods to obtain reasonably
good initial settings for PID controllers [4,10]. However, ZNPIDs are
found to perform quite satisfactorily for first-order processes, but
they usually fail to provide acceptable performance for high-order
and nonlinear processes [7,10,12] due to large overshoots and poor
load regulation.

To overcome such drawbacks several tuning schemes are
proposed [7,10–17]. In [13] a time response based design
methodology is presented for PID controllers. Depending on the
magnitude of normalized dead-time, three types of tuning rules are
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proposed for processes with time-delay ranging from zero to large
values. Robust and optimal setting for PID controllers is proposed
in [14], where optimization has resulted in a couple of tuning
rules for stable, oscillating, and non-oscillating plants. A simple
method for the tuning of PID controllers for integrating processes
with dead-time is suggested in [15]. It is based on matching the
coefficient of the corresponding powers of s in the numerator
and that in the denominator of the close-loop transfer function.
A similar method for tuning PID controllers [16] for first-order
plus dead-time (FOPDT) processes is presentedwith a performance
comparable to that of a ZNPID. In [17] a PID controller is designed
based on transient performance specification withmonotonic step
response. All these suggested tuning schemes for PID controllers
are essentially applicable for linear systems.

For managing difficult tasks in nonlinear process control,
auto-tuning is a desirable feature and almost every industrial
PID controller provides it nowadays [4]. Various auto-tuning
schemes [18–24] are reported in the literature. A gain scheduling
scheme [19] is proposed to continuously update the proportional
and integral gains depending on the error signal. A combined
least-squares estimation and search technique [20] is used for
the automatic tuning of ZNPIDs. To ensure the robustness of
performance and higher stability for FOPDT processes, a PID
controller with dual adaptive loops is presented in [21]. The first
adaptive loop makes online tuning of the PID controller to ensure
stability before updating the nominal model, and the second loop
identifies the changes to the nominal model and retunes the
controller accordingly.

To achieve improved robustness and better transient response,
back-stepping based adaptive PID control is proposed [22], which
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Fig. 1. Block diagram of the proposed AZNPID.

leads to a PD adaptive controller for linear minimal phase
processes. A robust self-tuning PID controller [23] is developed
for nonlinear systems with a high gain preload relay kept in
series. The chattering signal (considered as a naturally occurring
signal) is used for tuning and retuning the PID controller
under different operating conditions. Amplitude dependent gain
adjustment scheme is used in [24] to obtain the ultimate point
of frequency response with better accuracy compared to relay
feedback technique. Based on the normalized dead-time and
normalized gain of the process a guideline is provided for the
selection of suitable control algorithms, and refinements of ZN
tuning rules for PI and PID controllers in order to achieve enhanced
performances [7].

Dynamics of industrial processes are not completely known and
are subjected to changes under various operating conditions. To
obtain the desired response an online gain modification scheme
is proposed for ZNPIs [12], which simultaneously adjusts both
proportional and integral gains depending on the instantaneous
error (e) and change of error (1e) of the controlled variable. It has
already been mentioned that the present study is an endeavor to
extend the basic auto-tuning strategy for ZNPIs [12] to ZNPIDs,
thereby making the scheme more general and applicable for a
wide range of processes. Similar knowledge based online tuning
schemes with fuzzy If-Then rules are used to adjust the output
scaling factor (equivalent to the overall gain of the controller) of
self-tuning fuzzy logic controllers [25,26], and also to update the
parameters of conventional non-fuzzy PID controllers [27] based
on the instantaneous process states (i.e., e and 1e).

While running a plant in manual mode, an operator generally
adjusts the controller gains according to the current process trend
to attain the desired response. The basic idea behind such gain
manipulation strategy is that, when the process variable is moving
away from the set-point, controller takes aggressive action to
bring it back to the desired value as soon as possible. On the
other hand, when the process is moving fast towards the set-
point, control action is reduced to restrict the potential overshoot
and undershoot in subsequent operating phases. In the proposed
AZNPID,we try to realize the above gainmodification strategywith
the help of some simple heuristic rules incorporating an online
gain updating factor α, defined on the normalized e and 1e. Here,
proportional, integral, and derivative gains of AZNPID are adjusted
towards improving the process response during set-point change
as well as load disturbance.

The performance of AZNPID is tested for several second-
and third-order linear and nonlinear dead-time processes and
compared with those of ZNPID [9], RZNPID [10], AZNPI [12],
and that proposed by Luyben [11] (LPID) in terms of a number
of performance indices — percentage overshoot (%OS), rise-
time (tr ), settling-time (ts), integral-absolute-error (IAE), and
integral-time-absolute-error (ITAE). Performance analysis reveals

that the proposed AZNPID is capable of providing an improved
overall performance both in transient and steady state conditions.
Robustness of AZNPID is tested by varying controller parameters
as well as process dead-time. Stability issues of this nonlinear
controller (AZNPID) are addressed for linear processes. The
proposedAZNPID is successfully implementedon a real time servo-
based position control system. The rest of the paper is divided
into three parts. Section 2 presents the proposed controller design
along with its tuning strategy and stability issues. Simulation
results for various linear and nonlinear dead-time processes as
well as the real time implementation of AZNPID are illustrated in
Section 3. We conclude in Section 4.

2. The proposed controller

2.1. Design of AZNPID

The simplified block diagram of the proposed PID controller is
shown in Fig. 1. It shows that the gain updating factor α, a function
of the process error (e) and change of error (1e) continuously
adjusts the parameters of a ZNPID. Fig. 1 indicates that the starting
point of the AZNPID for a given process is its corresponding ZNPID,
which means initial settings of the proposed PID auto-tuner are
based on ZN tuning rules. Each of such ZN tuned parameters
of AZNPID (i.e., proportional, integral, and derivative gains) is
updated online by the single modifying factor α through some
simple relations.

Let the discrete form of a conventional ZNPID be described as

uc (k) = Kp

[
e (k)+

1t
Ti

k∑

i=0

e (i)+
Td
1t

1e (k)

]

= Kpe (k)+ Ki

k∑

i=0

e (i)+ Kd1e (k) . (1)

In Eq. (1), uc(k) is the control action at kth sampling instant, Kp
is the proportional gain, Ki = Kp(1t/Ti) is the integral gain, and
Kd = Kp(Td/1t) is the derivative gain where Ti is the integral time,
Td is the derivative time, and 1t is the sampling interval. Kp, Ti,
and Td are calculated according to ZN ultimate cycle tuning rules
(i.e., Kp = 0.6 ku, Ti = 0.5 tu, and Td = 0.125 tu, where ku and tu
are the ultimate gain and ultimate period respectively). Here, e(k)
and 1e(k) are expressed as

e (k) = r − y (k) , (2)
1e (k) = e (k)− e (k− 1) , (3)

when r is the set-point, and y(k) is the process output. The
proposed gain updating factor α is defined by

α (k) = eN (k)×1eN (k) . (4)

Please cite this article in press as: Dey C, Mudi RK. An improved auto-tuning scheme for PID controllers. ISA Transactions (2009), doi:10.1016/j.isatra.2009.07.002



ARTICLE IN PRESS
C. Dey, R.K. Mudi / ISA Transactions ( ) – 3

Fig. 2. Variation of α with eN and 1eN .

Here eN(k) =
e(k)
|r|

, (5)

and 1eN(k) = eN(k)− eN(k− 1) (6)

are the normalized values of e(k) and 1e(k) respectively. From
Eq. (4), without loss of generality, it may be assumed that the
possible variation of α will lie in the range [−1, 1] for all close-loop
stable processes.

In our proposed AZNPID, Kp, Ki, and Kd will be continuously
modified by the gain updating factor α with the following simple
heuristic relations:

Km
p (k) = Kp (1+ k1 |α(k)|) , (7)

Km
i (k) = Ki (0.3+ k2α(k)) , (8)

Km
d (k) = Kd (1+ k3 |α(k)|) . (9)

Thus, from Eqs. (1) and (7)–(9), AZNPID can be expressed as

ua (k) = Km
p (k)e (k)+ Km

i (k)
k∑

i=0

e (i)+ Km
d (k)1e (k) , (10)

where Km
p (k), Km

i (k), and Km
d (k) are the modified proportional,

integral, and derivative gains respectively at kth instant, and ua(k)
is the corresponding control action. In Eqs. (7)–(9), k1, k2, and k3 are
three positive constants, which will make the required variations
in Km

p , Km
i , and Km

d around their respective initial values.
The objective of the proposed auto-tuning scheme is that,

subsequent to any set-point change or load disturbance, the
three parameters of AZNPID (i.e., Km

p , Km
i , and Km

d ) will be
continuously adjusted by the nonlinear updating factor α in order
to have a quick recovery of the process during both the set-point
change and load variation without a large number of oscillations.
Such real time nonlinear gain variations are introduced towards

achieving an enhanced control performance. Eqs. (7)–(9) indicate
that compared to ZNPID, in AZNPID both the proportional and
derivative gains, i.e., Km

p and Km
d are increased throughout the

entire operating cycle, though may not be in the same proportion
(due to difference in the values of k1 and k3), while the integral
gain (Km

i ) is either increased or decreased from its initial setting
depending on the operating phases.

Fig. 2 shows the highly nonlinear variation of α. Therefore,
unlike the linear control surface of ZNPID (Fig. 3(a)), AZNPID has
a highly nonlinear control surface as depicted in Fig. 3(b) due to
its nonlinear gain variations according to Eqs. (7)–(9). Note that
in spite of its nonlinear gain variation, the basic PID structure is
preserved in AZNPID. Therefore, an existing PID controller can be
easily modified into the proposed form just by incorporating α.
Moreover, the present gain modification scheme is independent of
any process parameter or any performance index; it depends only
on the recent process states.

2.2. Tuning strategy

While designing AZNPID, the following major points are taken
into consideration to provide the appropriate control action in
different operating phases. For a better understanding, typical
close-loop response of an under-damped second-order process
and its corresponding variation of α are illustrated in Fig. 4.

(i) When the process is far from the set-point and moving fast
towards it (e.g., points A, C, or F in Fig. 4), proportional gain
should be reasonably large to reach the set-point quickly but
the integral gain should be small enough to prevent the large
accumulation of control action, which may result in a large
overshoot or undershoot in future. At the same time, to reduce
oscillations derivative gain should be increased for higher
damping. Observe that, in such transient phases e and1e are of
opposite signs. Therefore, α becomes negative according to Eq.
(4),whichwillmake both the proportional and derivative gains
higher, and integral gain lower than their corresponding initial
values (i.e.,Km

p > Kp,Km
d > Kd, andKm

i < 0.3Ki) as indicated by
Eqs. (7)–(9). Thus, our proposed gain adaptive rules (Eqs. (7)–
(9)) try to adjust the parameters of AZNPID towards reducing
the overshoot and/or undershoot, and oscillation in the process
response.

(ii) When the process is moving further away from the set-
point (e.g., points B, D, or E in Fig. 4), increased proportional,
derivative as well as integral gains are expected to bring back
the process variable to its desired value quickly. Under such
situations, both e and 1e will have the same sign, thereby
making α positive (Eq. (4)), which in turn makes all the gain
parameters of AZNPID (i.e., Km

p , Km
d , and Km

i ) larger than their

(a) Linear control surface of ZNPID. (b) Nonlinear control surface of AZNPID.

Fig. 3.
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Fig. 4. Typical close-loop response of an under-damped second-order process (above) and its corresponding variation of the gain updating factor α (below).

respective initial values according to Eqs. (7)–(9). As a result,
the control action becomes more aggressive (i.e., ua > uc

according to Eqs. (1) and (10)), whichwill try to restrict further
deterioration of such situations. Therefore, AZNPID satisfies
the need for a relatively strong control action to improve the
process recovery.

From the above discussion it is evident that our proposed auto-
tuning scheme always attempts to modify AZNPID parameters
(proportional, integral, and derivative gains) in the right directions
to generate required control action in different transient phases
for providing improved performances under both set-point change
and load disturbance. Of course, depending on the type of response
desired to achieve, suitable values of k1, k2, and k3 are to be selected
by the designer either from the knowledge about the process to be
controlled or through trial and error.

Alternatively, for a given process suitable optimization (multi-
objective optimization seems to be more appropriate) tools
may be applied to find their best possible values with a view
to achieving the desired performance with some pre-specified
performance indices in the transient response. Although, satisfying
stringent requirements for transient response while maintaining
the robustness of the system seems to be the most difficult task
in designing a controller [14,28]. In general, many optimization
schemes do not work well. Optimization results are highly
dependent on initializations. Above all, the problem of trapping in
local minima is always there. Even after optimization the design
goal may be underachieved. Therefore, the best optimization
algorithm for a particular system needs to be chosen carefully. But
a typical designer or a practicing engineermay not be familiar with
various optimization techniques and associated software tools.

In this study, we do not use any optimization scheme. The
values of k1, k2, and k3 (i.e., k1 = k2 = 1, k3 = 12) chosen for
AZNPID are found empirically through extensive simulation
experiments on a wide range of linear and nonlinear processes.
Moreover, the same values are used for all the processes in our

simulation as well as real time experiments, thereby suggesting
the proposed auto-tuning scheme as a generalized one rather than
a specific optimization based design.

In this regard, it is worthmentioning that our proposed AZNPID
apparently adds three new tuning parameters k1, k2, and k3 over
ZNPID. However, while setting their appropriate values, first we
consider k1 = k2 = 1, and then, we chose the value of k3 = 12
based on extensive simulation results as mentioned above. So, we
may not take into account the tuning of two additional parameters
k1 and k2. But they are incorporated in Eqs. (7) and (8) only tomake
the gain modifying rules for Kp and Ki (i.e., Eqs. (7) and (8)) more
flexible. Therefore, the proposed controller actually needs tuning
of a single additional parameter k3.

2.3. Stability

The proposed AZNPID is a nonlinear controller due to the
nonlinear variation of α. We know that the stability analysis for
nonlinear systems is not straightforward. However, here we make
an attempt to study the relative stability for the linear processes
under close-loop control with AZNPID by calculating the gain
margin (GM) and phase margin (PM) for two boundary values of
α, i.e., αmax and αmin. Here, we find these two boundary values
when the process shows sustained oscillation under proportional
control, i.e., the process is at the verge of instability. Using these
extreme values (αmax and αmin), relative stability margins, i.e., GM
and PM along with their corner frequencies are evaluated for the
respective linear process under ZNPID and AZNPID. In the result
section, it will be shown that all the linear close-loop systems
under AZNPID have good stability margins.

Moreover, to verify the stability robustness for the proposed
controller, Kharitonov’s method [29] has been used with the
boundary values of α, i.e., αmax and αmin. Regardless of the degree
of polynomials only four polynomials (Kharitonov’s polynomials)
has to be tested to checkwhether the close-loop system is robustly
stable or not. The systemwill be robustly stable if all the roots of the
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(a) Responses and control actions of the second-order linear process with
L = 0.2 s.

(b) Responses and control actions for the second-order linear process with
L = 0.3 s.

Fig. 5.

polynomials have negative real parts. In the following section, we
shall justify the stability robustness of AZNPID for linear processes.

3. Results

Effectiveness of the proposed scheme is verified through
simulation experiments on second- and third-order processes [5].
We have also tested our proposed AZNPID on a real time digital
servo system of Feedback Instruments Limited [30]. In addition
to response characteristics, performance of the proposed AZNPID
is compared with those of ZNPID, RZNPID, LPID, and AZNPI with
respect to a number of performance indices, such as %OS, tr , ts, IAE,
and ITAE. For each of the linear process under AZNPID its stability
margins (GM and PM) and Kharitonov’s polynomials are evaluated
for stability analysis.

The values of tuning parameters k1, k2, and k3 are chosen as
k1 = k2 = 1, and k3 = 12 (these are empirical values as previously
mentioned) for all the examples. To investigate the sensitivity of
these tuning parameters on the performance of AZNPID, ±25%
perturbations are applied on their above mentioned values. In
order to study the robust performance of AZNPID the process dead-
timehas been increasedby a considerable amount from its nominal
value. Nowwe present the detailed performance analysis for linear
and nonlinear processes including the real time implementation of
a practical servo system.

3.1. Linear processes

For our simulation experiments, we consider the following
linear processes used in [4,5]:

3.1.1. Second-order linear process
Transfer function of the process is given by

Gp(s) =
e−Ls

(1+ s)2
. (11)

Fig. 5(a) shows the response characteristics of the process in (11)
with L = 0.2 s under ZNPID, RZNPID, and AZNPID. Various
performance indices for these PID controllers along with LPID [11],
and AZNPI (proposed earlier [12]) are provided in Table 1a.
Fig. 5(a) exhibits considerably improved performance of AZNPID
over ZNPID, even better than RZNPID, specifically during load
disturbance. Table 1a clearly indicates the superiority of AZNPID
over ZNPID, RZNPID, LPID, and AZNPI. For examples, %OS has
been drastically reduced from more than 60% to below 1%, and
ts is reduced over 60% with respect to ZNPID. Nature of variation
in control actions for different PID controllers corresponding to
responses are shown in Fig. 5(a). Table 1a clearly reveals the
robust performance of the proposed scheme against considerable
perturbations (±25%) on the tuning parameters k1, k2, and k3.

To further study the robustness of the proposed controller, a
50% higher value of dead-time, i.e., L = 0.3 s is considered with
the same controller setting as that of L = 0.2 s. Corresponding
responses and the related control actions are shown in Fig. 5(b),
which also shows the same level of improvement in AZNPID
compared to ZNPID and RZNPID. Note that, even with this
increased dead-time overall performance of AZNPID ismuch better
than that of AZNPI (Table 1a), though the %OS in AZNPI (about 6%) is
slightly less than that of AZNPID. Table 1b presents the gainmargin
(GM) andphasemargin (PM) of AZNPID for twopossible values ofα

Please cite this article in press as: Dey C, Mudi RK. An improved auto-tuning scheme for PID controllers. ISA Transactions (2009), doi:10.1016/j.isatra.2009.07.002



ARTICLE IN PRESS
6 C. Dey, R.K. Mudi / ISA Transactions ( ) –

Table 1a
Performance analysis of the second-order linear process: Gp(s) = e−Ls

(1+s)2
.

L ZNPID RZNPID LPID AZNPI AZNPID
k1 = 1 k1 = 1.25 k1 = 0.75 k1 = 1.25 k1 = 0.75 k1 = 1.25 k1 = 1 k1 = 1

k2 = 1 k2 = 1.25 k2 = 0.75 k2 = 1.25 k2 = 0.75 k2 = 1 k2 = 1.25 k2 = 1

k3 = 12 k3 = 15 k3 = 9 k3 = 9 k3 = 15 k3 = 12 k3 = 12 k3 = 15

0.2 s

%OS 60.61 11.40 0.00 4.04 0.56 2.26 2.22 2.05 2.18 0.42 0.78 2.22

tr (s) 1.00 1.50 1.60 2.30 1.30 2.00 1.20 1.20 1.98 1.30 1.40 1.90

ts(s) 4.00 3.90 10.90 2.60 1.60 2.30 1.50 1.50 2.20 1.60 1.70 2.20

IAE 2.56 2.23 2.18 2.16 1.69 1.74 1.70 1.69 1.75 1.68 1.70 1.74

ITAE 11.01 10.06 8.96 9.32 7.28 7.33 7.47 7.38 7.40 7.25 7.28 7.36

0.3 s

%OS 85.43 26.40 6.60 5.98 12.27 7.58 17.10 16.98 7.59 13.08 11.46 7.59

tr (s) 0.90 1.30 1.30 2.40 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10

ts(s) 8.10 5.60 6.60 5.90 4.20 4.20 4.40 4.40 4.20 4.30 4.20 4.20

IAE 4.11 3.34 2.58 3.04 2.23 2.20 2.30 2.30 2.19 2.24 2.22 2.19

ITAE 29.64 26.76 17.07 26.58 15.70 15.61 16.08 16.08 15.54 15.78 15.65 15.58

Table 1b
Stability and robustness analysis for the second-order linear process: Gp(s) = e−0.2s

(1+s)2
.

ZNPID AZNPID Kharitonov’s Polynomials for AZNPID with αmax and αmin

αmax αmin

GM (dB) Inf (Inf rad/s) Inf (Inf rad/s) Inf (Inf rad/s) s4 + 7s3 + 27.6s2 + 22.9s+ 3.25 = 0;
PM (deg) 45.1 (1.71 rad/s) 72.5 (2.76 rad/s) 72.9 (2.57 rad/s) s4 + 7s3 + 25.5s2 + 23.45s+ 7.2 = 0;

s4 + 7s3 + 25.5s2 + 22.9s+ 7.2 = 0;
s4 + 7s3 + 27.6s2 + 23.45s+ 3.25 = 0

Table 2a
Performance analysis of the second-order marginally stable process: Gp(s) = e−Ls

s(s+1) .

L ZNPID RZNPID LPID AZNPI AZNPID
k1 = 1 k1 = 1.25 k1 = 0.75 k1 = 1.25 k1 = 0.75 k1 = 1.25 k1 = 1 k1 = 1

k2 = 1 k2 = 1.25 k2 = 0.75 k2 = 1.25 k2 = 0.75 k2 = 1 k2 = 1.25 k2 = 1

k3 = 12 k3 = 15 k3 = 9 k3 = 9 k3 = 15 k3 = 12 k3 = 12 k3 = 15

0.2 s

%OS 79.40 46.09 23.47 63.88 27.08 25.96 28.76 28.71 26.06 27.16 26.96 26.01

tr (s) 1.30 1.60 1.80 1.80 1.60 1.60 1.50 1.50 1.60 1.60 1.60 1.60

ts(s) 8.70 8.40 11.10 17.90 9.60 9.80 9.40 9.30 9.90 9.60 9.60 9.90

IAE 4.43 3.78 3.85 7.01 3.38 3.39 3.38 3.37 3.39 3.37 3.38 3.39

ITAE 38.01 35.47 38.36 87.59 30.18 30.16 30.20 30.11 30.24 30.10 30.21 30.20

0.3 s

%OS 98.60 60.24 29.43 72.93 31.58 28.16 35.54 35.55 28.26 31.94 31.19 28.21

tr (s) 1.20 1.50 1.70 1.70 1.40 1.50 1.40 1..40 1.50 1.40 1.40 1.50

ts(s) 12.70 10.80 11.00 Unstable 9.40 9.80 9.00 9.00 9.80 9.30 9.40 9.80

IAE 5.98 5.04 4.07 9.28 3.59 3.58 3.60 3.59 3.59 3.59 3.59 3.58

ITAE 61.25 56.72 43.30 134.83 34.44 34.38 34.53 34.43 34.46 34.37 34.47 34.42

Table 2b
Stability and robustness analysis for the second-order marginally stable process: Gp(s) = e−0.2s

s(s+1) .

ZNPID AZNPID Kharitonov’s Polynomials for AZNPID with αmax and αmin

αmax αmin

GM (dB) Inf (Inf rad/s) Inf (Inf rad/s) Inf (Inf rad/s) s4 + 6s3 + 15.1s2 + 11.2s+ 1.25 = 0;
PM (deg) 32.3 (1.26 rad/s) 65.2 (1.86 rad/s) 64.4 (1.79 rad/s) s4 + 6s3 + 14.3s2 + 11.3s+ 2.25 = 0;

s4 + 6s3 + 14.3s2 + 11.2s+ 2.25 = 0;
s4 + 6s3 + 15.1s2 + 11.3s+ 1.25 = 0

(αmax andαmin) obtained under sustained oscillation of the process,
i.e., while the system is at the verge of instability. Table 1b also
clearly reveals that the relative stability has been improved under

AZNPID in comparison with ZNPID. Stability robustness is verified
from the negative roots of Kharitonov’s polynomials (Table 1b)
formed with two boundary values αmax and αmin.
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(a) Responses and control actions for the second-order marginally stable
process with L = 0.2 s.

(b) Responses and control actions for the second-order marginally stable
process with L = 0.3 s.

Fig. 6.

Table 3a
Performance analysis of the third-order linear process: Gp(s) = 1−βs

(1+s)3
.

β ZNPID RZNPID LPID AZNPI AZNPID
k1 = 1 k1 = 1.25 k1 = 0.75 k1 = 1.25 k1 = 0.75 k1 = 1.25 k1 = 1 k1 = 1

k2 = 1 k2 = 1.25 k2 = 0.75 k2 = 1.25 k2 = 0.75 k2 = 1 k2 = 1.25 k2 = 1

k3 = 12 k3 = 15 k3 = 9 k3 = 9 k3 = 15 k3 = 12 k3 = 12 k3 = 15

0.1

%OS 44.15 6.73 0.00 42.40 2.05 0.29 3.80 4.39 0.00 2.05 2.63 0.29

tr (s) 2.00 3.11 29.98 2.10 2.51 2.60 2.42 2.33 2.69 2.51 2.51 2.65

ts(s) 10.85 9.47 29.98 – 16.38 16.24 16.34 17.07 15.60 16.61 16.38 16.01

IAE 3.44 3.18 4.47 6.72 3.07 3.05 3.10 3.12 3.05 3.08 3.08 3.05

ITAE 42.46 40.51 55.06 103.40 41.10 40.93 41.29 41.87 40.40 41.27 41.21 40.66

0.2

%OS 54.68 12.57 0.00 53.51 7.89 5.56 9.65 10.82 4.39 7.89 7.89 4.97

tr (s) 1.99 2.92 29.99 2.19 2.28 2.28 2.23 2.19 2.46 2.23 2.28 2.37

ts(s) 14.12 13.80 29.99 – 15.41 15.23 15.41 17.16 14.82 15.64 15.37 15.09

IAE 4.27 3.74 4.55 8.57 3.32 3.28 3.37 3.40 3.25 3.33 3.33 3.26

ITAE 56.83 53.40 57.48 134.30 46.27 45.95 46.59 47.28 45.29 46.47 46.41 45.62

3.1.2. Second-order marginally stable process

Gp(s) =
e−Ls

s(s+ 1)
. (12)

Fig. 6(a) and (b) depict the responses and the related control
actions of this integrating process with L = 0.2 s and 0.3 s,
respectively and detailed performance comparison is illustrated in

Table 2a. In this case, %OS of ZNPID seems to be very large (about
80%), which may not be acceptable in many situations. AZNPID is
found to reduce the %OS by more than 65% compared to ZNPID,
whereas LPID also offers a lower overshoot but with a considerably
larger settling-time. Observe that, RZNPID provides 46% overshoot
(Fig. 6(a)) with no improvement in the load regulationwith respect
to ZNPID. Even for a 50% perturbation in dead-time i.e., for L =
0.3 s, AZNPID still provides much better performance compared to
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(a) Responses and control actions of the third-order linear process with β = 0.1. (b) Responses and control actions of the third-order linear process with
β = 0.2.

Fig. 7.

Table 3b
Stability and robustness analysis for the third-order linear process: Gp(s) = 1−0.1s

(1+s)3
.

ZNPID AZNPID Kharitonov’s Polynomials for AZNPID with αmax and αmin

αmax αmin

GM (dB) 16.1 (3.39 rad/s) 15.7 (4.34 rad/s) 15.6 (4.4 rad/s) s4 + 2.7s3 + 5.66s2 + 4.49s+ 0.38 = 0;
PM (deg) 39.2 (1.13 rad/s) 54.6 (1.43 rad/s) 54.8 (1.47 rad/s) s4 + 2.69s3 + 5.74s2 + 4.47s+ 0.56 = 0;

s4 + 2.7s3 + 5.74s2 + 4.49s+ 0.56 = 0;
s4 + 2.69s3 + 5.66s2 + 4.47s+ 0.38 = 0

ZNPID, RZNPID, and LPID. Performance robustness against ±25%
variation in k1, k2, and k3 has also been established from Table 2a.
Moreover, Table 2a shows that the overall performance of AZNPI
is very poor, and for a moderate change in dead-time the process
becomes unstable. Table 2b clearly depicts the higher stability
margins of AZNPID compared to ZNPID at the two extreme values
of α while the process is under sustained oscillation. All the four
Kharitonov’s polynomials (Table 2b) with negative roots justify
that the closed-loop system is robustly stable.

3.1.3. Third-order linear process
A second-order lag plus dead-time (SOPDT) model is usually

considered to be a fair approximation for most of the industrial
processes. However, to study the effectiveness of the proposed
scheme, third-order linear as well as nonlinear process models are
also tested. The transfer function of such a linear system is

Gp (s) =
1− β s
(1+ s)3

. (13)

Two different values of β , i.e., β = 0.1 and 0.2 are considered
for this process. Fig. 7(a) and (b) show the responses and
their corresponding control actions of (13) for the two separate
values of βrespectively. Various performance indices for different
controllers are recorded in Table 3a. Like previous examples,
we have tuned the controllers for β = 0.1 and studied their
performances for β = 0.2 as well. In both cases, %OS of ZNPID
is quite large and its load regulation is also not satisfactory. Here,
LPID shows a very poor performancedue to its sluggish response. In
case of RZNPID, although the %OS is significantly reduced, it shows
equally poor loaddisturbance response as ZNPIDdoes. On the other
hand, in case of AZNPID there is a remarkable improvement in
the set-point response, and a considerable improvement in the
load rejection behavior (Fig. 7(a) and (b)). With ±25% variations
in tuning parameters k1, k2, and k3 performance indices are
listed in Table 3a, which indicates a robust nature of AZNPID
against its parametric variations. Relative stability margins (GM
and PM) for ZNPID and AZNPID are recorded in Table 3b.
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Table 4
Performance analysis of the second-order nonlinear process: d2y

dt2
+ dy

dt + 0.2y2 = u(t − L).

L ZNPID RZNPID LPID AZNPI AZNPID
k1 = 1 k1 = 1.25 k1 = 0.75 k1 = 1.25 k1 = 0.75 k1 = 1.25 k1 = 1 k1 = 1

k2 = 1 k2 = 1.25 k2 = 0.75 k2 = 1.25 k2 = 0.75 k2 = 1 k2 = 1.25 k2 = 1

k3 = 12 k3 = 15 k3 = 9 k3 = 9 k3 = 15 k3 = 12 k3 = 12 k3 = 15

0.3 s

%OS 65.78 43.53 10.48 29.60 16.50 14.55 18.78 18.72 14.68 16.72 16.22 14.61

tr (s) 1.50 1.70 2.10 2.10 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80

ts(s) 8.70 8.40 4.40 12.80 4.50 4.70 4.40 4.40 4.70 4.50 4.50 4.70

IAE 3.66 3.32 2.60 4.34 2.68 2.69 2.67 2.67 2.70 2.68 2.68 2.70

ITAE 27.16 25.75 21.49 46.95 22.32 22.51 22.13 22.07 22.57 22.26 22.34 22.54

0.4 s

%OS 79.48 54.94 15.51 33.29 22.18 18.91 25.53 25.52 18.97 22.59 21.74 18.94

tr (s) 1.40 1.60 2.00 2.00 1.70 1.70 1.60 1.60 1.70 1.70 1.70 1.70

ts(s) 10.80 10.60 4.50 Unstable 7.80 7.70 7.80 7.80 7.70 7.80 7.80 7.70

IAE 4.68 4.21 2.80 5.29 2.93 2.90 2.97 2.97 2.91 2.94 2.93 2.90

ITAE 39.44 37.09 23.08 64.00 25.00 24.99 25.07 25.04 25.04 24.99 25.00 25.01

(a) Responses and control actions for the second-order nonlinear process with
L = 0.3 s.

(b) Responses and control actions for the second-order nonlinear process with
L = 0.4 s.

Fig. 8.

Here, we see that PM of AZNPID is higher than that of ZNPID.
Kharitonov’s polynomials formed with two boundary values of
α (αmax and αmin) ensure the stability robustness of the close-
loop system. From response curves (Fig. 7(a) and (b)), and listed
performance parameters (Tables 3a and 3b) it is observed that the
overall performance of AZNPID is quite good compared to other
controllers.

3.2. Nonlinear processes

Besides linear processes illustrated above, we also studied
the performance of AZNPID for a number of nonlinear second-
and third-order dead-time processes. However, since the stability
analysis for nonlinear systems is not easy and our proposed
AZNPID is also a nonlinear controller, it becomes very difficult
to provide stability analysis for nonlinear processes. Therefore, in
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Table 5
Performance analysis of the third-order nonlinear process: d3y

dt3
+ d2y

dt2
+ dy

dt + y2 = u(t − L).

L ZNPID RZNPID LPID AZNPI AZNPID
k1 = 1 k1 = 1.25 k1 = 0.75 k1 = 1.25 k1 = 0.75 k1 = 1.25 k1 = 1 k1 = 1

k2 = 1 k2 = 1.25 k2 = 0.75 k2 = 1.25 k2 = 0.75 k2 = 1 k2 = 1.25 k2 = 1

k3 = 12 k3 = 15 k3 = 9 k3 = 9 k3 = 15 k3 = 12 k3 = 12 k3 = 15

0.2 s

%OS 55.19 18.78 0.00 0.00 0.42 0.00 4.40 4.25 0.00 1.00 0.00 0.00

tr (s) 1.10 1.50 1.70 2.50 1.40 1.50 1.30 1.30 1.50 1.40 1.40 1.50

ts(s) 5.20 4.10 10.00 5.50 3.30 2.90 3.60 3.60 2.70 3.40 3.20 2.80

IAE 2.44 2.19 2.52 2.41 1.91 1.91 1.95 1.95 1.92 1.92 1.91 1.91

ITAE 14.71 13.79 15.05 16.73 13.28 13.10 13.54 13.47 13.17 13.30 13.24 13.13

0.3 s

%OS 73.50 32.19 5.02 0.00 12.83 8.96 16.74 16.66 9.01 13.53 12.09 8.97

tr (s) 1.10 1.40 1.50 2.70 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20

ts(s) 9.00 6.80 9.60 5.80 5.90 5.60 6.10 6.00 5.60 5.90 5.80 5.60

IAE 3.62 3.06 2.66 2.73 2.31 2.26 2.39 2.38 2.26 2.33 2.30 2.26

ITAE 25.68 23.42 16.60 23.00 17.04 16.76 17.41 17.36 16.77 17.11 16.96 16.76

(a) Responses and control actions for the third-order nonlinear process with
L = 0.2 s.

(b) Responses and control actions for the third-order nonlinear process with
L = 0.3 s.

Fig. 9.

the present study, we could not provide stability analysis for the
nonlinear processes illustrated below.

3.2.1. Second-order nonlinear process
Let us consider the nonlinear process

d2y
dt2

+
dy
dt
+ 0.2y2 = u(t − L). (14)

Responses of (14) and the corresponding control actions with L =
0.3 s under ZNPID, RZNPID, and AZNPID are shown in Fig. 8(a).
Though the controllers are tuned for L = 0.3 s, a higher value,
i.e., L = 0.4 s is also tested without changing the controllers’ pa-
rameters. Fig. 8(b) illustrates the response characteristics and the
related control actions for L = 0.4 s. Table 4 presents the detailed
performance indices of the various controllers. From Fig. 8(a) and
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Fig. 10. Experimental setup of feedback digital servo process rig.

(b) and Table 4 it is found that in case of AZNPID, %OS is reduced
by more than 70% compared to ZNPID, and nearly 60% compared

to RZNPIDwith a significantly reduced value of ts. In this case, LPID
offers comparable performance with AZNPID. Performance anal-
ysis reveals that unlike ZNPID and RZNPID, AZNPID is capable of
providing satisfactory result even for a reasonable change in the
process dead-time. Note that for this nonlinear process AZNPI pro-
vides very poor performance (Table 4), even the process becomes
unstable when the dead-time is moderately increased. Like pre-
vious case, Table 4 also shows the robust performance of AZNPID
against±25% changes in k1, k2, and k3.

3.2.2. Third-order nonlinear process
Lastly, the following third-order nonlinear process is consid-

ered

d3y
dt3

+
d2y
dt2

+
dy
dt
+ y2 = u(t − L). (15)

Fig. 9(a) and (b) respectively show the responses and control
actions of (15) for two different values of dead-time L = 0.2 s
and 0.3 s. Performance indices for all the controllers are depicted

(a) Response and control action under ZNPID.

(b) Response and control action under AZNPID.

Fig. 11.

Please cite this article in press as: Dey C, Mudi RK. An improved auto-tuning scheme for PID controllers. ISA Transactions (2009), doi:10.1016/j.isatra.2009.07.002



ARTICLE IN PRESS
12 C. Dey, R.K. Mudi / ISA Transactions ( ) –

(a) Response and control action under ZNPID with 25% increased Kp .

(b) Response and control action under AZNPID with 25% increased Kp .

Fig. 12.

in Table 5. Similar to the linear process in (13), for this nonlinear
process too, AZNPID exhibits much better performance under
both set-point change and load disturbance compared to ZNPID,
RZNPID, and LPID. Although certain improvements are found in
RZNPID during set-point response but no improvement is observed
in load regulation. Sluggish nature of LPID results larger settling-
time along with higher ITAE values. Table 5 indicates that except
%OS, all other performance indices of AZNPID are better that
those of AZNPI. As reflected in Table 5, AZNPID is found to be
capable of providing almost the same level of performance with
reasonable variations in k1, k2, and k3. Thus, once again, AZNPID
exhibits improved performance over ZNPID, RZNPID, LPID, and
AZNPI. At the same time, it shows performance robustness against
considerable variations in the controller parameters as well as
process parameter.

3.3. Real time implementation

Servo-based position control is a typical problem in various
industrial processes. We have experimented on a laboratory

scale PC based DC servo motor rig (Digital Servo Workshop
with MATLAB, Model: 33-004, Manufacturer: Feedback [30]) to
demonstrate the performance of our proposed algorithm. The
digital servo rig has two parts, namely hardware and software.
The hardware units are mechanical unit (model: 33-100) and
digital unit (model: 33-120). Mechanical unit consists of power
amplifier, dc servo motor and tacho-generator, absolute and
incremental digital encoders, input and output potentiometers, a
digital speed and voltage display, and a sine, square, and triangular
waveform generator. The digital unit carries ADC and DAC for
signal conversion, switching, multiplexing, encoder circuits, and
PWMmotor drive.With the help of SIMULNIK programming under
MATLAB 6.5 we implement different control algorithms.

During experimentation we have used SIMULINK generated
square wave as the reference signal. The experimental setup
is shown in Fig. 10. Here we have implemented our proposed
controller using SIMULINK programming. With the help of Real
Time Workshop (RTW) and Real Time Windows Target (RTWT)
environment theperformance of the proposed auto-tuning scheme
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(a) Response and control action under ZNPID with 25% reduced Kp .

(b) Response and control action under AZNPID with 25% reduced Kp .

Fig. 13.

has been implemented for achieving the desired position (given by
the reference signal) by the dc servo motor. RTWT communicates
with the control program, and interfaces the mechanical unit
through the digital board. RTW generates C code using Microsoft
C++ Professional from the SIMULNK block diagram and acts as the
intermediary for twoway data flow from the physical servo system
to and from the SIMULNK model. The tuning of the PID controller
is done according to ZN relation (proportional, integral, and
derivative parameters are given by the manufacturer Feedback).
Fig. 11(a) and (b) show the responses and variation of control
signals for ZNPID and AZNPID, respectively. We also observe
performances with ±25% perturbations in the proportional gain,
Kp. Corresponding responses and control signals are depicted in
Figs. 12 and 13. Fig. 11 reveals an improved tracking performance
of AZNPID compared to ZNPID. A similar performance is observed
with 25% increased Kp as depicted by Fig. 12. However, comparable
performances are exhibited by ZNPID and AZNPID with 25%
reduced Kp.

Wemay observe that the proposed scheme supposed to provide
significantly improved performances for those systems which

produce large overshoots under ZNPID. Simulation results (Figs. 5–
9 and Tables 1a, 1b, 2a, 2b, 3a, 3b, 4 and 5) clearly substantiate
this fact. However, the real servo system does not exhibit such
behavior, as a result, we find marginal improvement in the
performance of AZNPID over ZNPID as shown in Figs. 11–13.

4. Conclusion

A simple model independent auto-tuning scheme has been
presented for ZNPIDs. The proposed scheme continuously adjusts
the proportional, integral, andderivative gains through someeasily
interpretable heuristic rules using a single nonlinear gain adaptive
parameter α, defined on the instantaneous process states. It can
be easily accommodated in an existing controller. Effectiveness
of the proposed AZNPID has been tested on a number of linear
and nonlinear high-order dead-time processes. The performance
of AZNPID has also been evaluated on a practical servo-based
position control system. AZNPID has shown consistently enhanced
performance both in transient and steady state conditions
compared to ZNPID, RZNPID, LPID, and AZNPI. Relative stability

Please cite this article in press as: Dey C, Mudi RK. An improved auto-tuning scheme for PID controllers. ISA Transactions (2009), doi:10.1016/j.isatra.2009.07.002



ARTICLE IN PRESS
14 C. Dey, R.K. Mudi / ISA Transactions ( ) –

for AZNPID is studied for linear systems and stability robustness
has been checked through Kharitonov’s polynomials. Performance
robustness of AZNPID has been established by varying the process
dead-time aswell as its tuning parameters k1, k2, and k3. Moreover,
the proposed scheme appeared to be a generalized one, since
the same values of k1, k2, and k3 have been used for all the
processes.

In the present study, we have used empirical values of k1, k2
and k3. Further works may be done to find their more appropriate
values. Here, we have addressed the stability issues of AZNPID for
linear systems only. More generalized stability analysis for linear
as well as nonlinear systems may also be tried to make this study
more meaningful.
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