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Abstract

Three optimal-tuning PID controller design schemes are presented for industrial control systems in this paper. They are time-
domain optimal-tuning PID control, frequency-domain optimal-tuning PID control and multiobjective optimal-tuning PID control.
These schemes can provide optimal PID parameters so that the desired system specifications are satisfied even in case where the
system dynamics are time variant or the system operating points change. They are applied to three industrial systems, a hydraulic
position control system, a rotary hydraulic speed control system and a gasifier, respectively. © 2001 Elsevier Science Ltd. All rights

reserved.
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1. Introduction

The PID control algorithm remains the most popular
approach for industrial process control despite con-
tinual advances in control theory. This is not only due
to the simple structure which is conceptually easy to
understand and, which makes manual tuning possible,
but also to the fact that the algorithm provides adequate
performance in the vast majority of applications. Most
of the PID tuning rules developed in the last 50 years
use frequency-response methods. Examples include,
Ziegler—Nichols rule (Ziegler & Nichols, 1942), symme-
tric optimum rule (Kessler, 1958; Voda & Landau,
1995), Ziegler—Nichols’ complementary rule (Mantz &
Tacconi, 1989), some-overshoot rule (Seborg, Edgar,
& Mellichamp, 1989), no-overshoot rule (Seborg et al.,
1989), refined Ziegler—Nichols rule (Hang, Astrom,
& Ho, 1991), integral of squared time weighted error
rule (Zhuang & Atherton, 1993), and integral of
absolute error rule (Pessen, 1994). These methods
are straightforward to apply since they provide simple
tuning formulae to determine the PID controller
parameters. However, since only a small amount of
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information on the dynamic behaviour of the process is
used, in many situations they do not provide good
enough tuning or produce a satisfactory closed-loop
response. For example, in practice, the Ziegler—Nichols
rule often leads to a rather oscillatory response to
setpoint changes.

In fact, to have required system performance speci-
fications, PID controller design of industrial systems is
complicated by a number of factors:

(a) The system has non-linearities such as directionally
dependent actuator and plant dynamics;

(b) Various uncertainties, such as modelling error and
external disturbances, are involved in the system.

(c) Sub-optimal tuning may be necessary to cater for
changes in the system with time such as ageing and
general wear.

(d) Commissioning is easiest without load, but the load
is often variable and affects the dynamic perfor-
mance.

As a result of these difficulties, the PID controllers are
rarely tuned optimally and the engineers will need to
settle for a compromise performance given the time
available for the exercise. This makes system tuning
more subjective, with the potential for different en-
gineers to achieve different, sub-optimal performance
from the same equipment. Poor tuning can lead to
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mechanical wear associated with excessive control
activity, poor control performance and even poor
quality products.

To improve the performance of PID tuning for
processes with changing dynamic properties, several
tuning strategies have been proposed, for example,
automatic tuning PID (Astrom & Hagglund, 1984) and
adaptive PID (Kraus & Mayron, 1984). These con-
trollers have self-initialisation and recalibration features
to cope with little a priori knowledge and significant
changes in the process dynamics, based on the auto-
matic measurement of the ultimate gain and period.
Various techniques, such as relay excitation feedback
(Astrom & Hagglund, 1984) and rule-based autotuning
(McCormack & Godfrey, 1998), have been developed.
However, the PID controller parameters are still
computed using the classic tuning formulae and, as
noted above, these do not provide good control
performance in all situations.

In order to provide consistent, reliable, safe and
optimal solution to industrial control problems, three
novel optimal-tuning PID control schemes are presented
in this paper. They are the time-domain optimal-tuning
PID control, the frequency-domain optimal-tuning PID
control and the multiobjective optimal-tuning PID con-
trol. These schemes generally consist of four basic parts:
model estimation, desired system specifications, optimal-
tuning mechanism and an online PID controller. The
model estimation provides a parametric/non-parametric
model for the process. The desired system specifications
include a set of control requirements of the process. The
optimal-tuning mechanism finds optimal parameters for
the PID controller so that the desired system specifications
are satisfied. These optimal-tuning PID control schemes
are demonstrated through their applications to a hydrau-
lic position control system, a rotary hydraulic speed
control system and a gasifier.

2. Time-domain optimal-tuning PID control

In the time domain, specifications for a control system
design involve certain requirements associated with the
time response of the system. The requirements are often
expressed in terms of the standard quantities on the rise
time, settling time, overshoot, peak time, and steady
state error of a step response. The time responses of two
standard systems are widely used to represent these
requirements (Daley & Liu, 1998). They are the first-
and second-order systems, whose transfer functions are

Gi(s) = o (M

(1)2

Gy(s) = 51— 2
Z(S) S2 + 2@(0,13 + (1)121 > ( )

where the parameters wy and w, are natural frequencies,
and ¢ the damping ratio. In the time domain, the PID
controller is assumed to be of the form:

t
u(t) = K, (e(t) + Ky %) + K,-/ e(t) ds, 3)
0
where K,, K; and K; are the PID parameters, e() =
r(¢) — y(¢) is the difference between the reference input
r(¢) and the position y(¢), and u(¢) is the control input.
In order to have a good closed-loop time response, the
following performance function needs to be considered
during the design of a PID controller:

oo

I KieK) = [ (a0 = 1 0 dt @)
where ygllep(l) is the desired step response which may be
produced by the transfer function G(s) or G,(s), and
Vsep(t) the step response of the system with the PID
controller. Since it is often not allowed to try different
PID controller parameters on the plant for the sake of
safety, yyuep(f) is replaced by the step response of the
model with the PID controller. Thus, the optimal PID
controller design may be stated as

K,)I,I}QPK(, J(Ky, Ki, Ky). 5)

Statistical considerations show that the performance
function J is the most appropriate choice for data fitting
when errors in the data have a normal distribution. The
function J is often preferred because it is known that the
best fitting calculation is straightforward to solve. But,
the solution to the minimisation equation (5) may not
give good control results for the system. For this case,
some other performance functions should be taken into
account. For example, if the control error between the
desired output and actual output is greater than a
tolerated value, its L. -norm function may need to be
considered during the controller design.

When a system has different operating points with
widely different dynamic properties, it is not always
possible to exercise control with a fixed parameter
controller, even if this is a highly robust controller. A
time-domain optimal-tuning PID control scheme is
proposed as shown in Fig. 1. It mainly consists of
model parameter estimation, desired system specifica-
tions, optimal-tuning mechanism, an online PID con-
troller and control performance prediction. The model
parameters are estimated using identification methods,
e.g., the least squares algorithm. The desired system
specifications are represented by the time response of the
desired standard first- or second-order systems. The
optimal-tuning mechanism finds optimal parameters for
the PID controller so that the desired time-domain
system specifications are satisfied. The online PID
controller is connected directly to the real plant. The
control performance prediction, which is composed of
an adaptive model of the plant and an offline PID
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controller, is used to predict the closed-loop control
performance of the system with the PID parameters
which are found by the optimal-tuning mechanism. The
operating procedure of the time-domain optimal-tuning
PID control is as follows. When the system operating
point or dynamics changes, the new model parameters
are re-estimated by switching on the estimation algo-
rithm. Then, using the updated model parameters, the
tuning mechanism searches for the optimal parameters
for the PID controller to satisfy the desired system
specifications. Before the online PID is updated by the
new optimal parameters, these parameters are tested in
the control performance prediction loop. Finally, the
PID controller is set to have the obtained optimal
parameters that have been verified as being safe on the
adaptive model. In this way, any unnecessary damage

resulting from the wrong PID parameters can be
prevented.

The time-domain optimal-tuning PID control was
applied to the hydraulic position control test rig in
Fig. 2. The rig has two hydraulic cylinders: main
cylinder and loading cylinder, which are coupled by a
shaft. An ALSTOM 3 way proportional valve controls
the main cylinder. The loading cylinder is controlled by
a Moog servo valve to simulate variations in load. This
test rig is used to represent a part of a control system of
hydraulic turbines. The main cylinder represents the
turbine servomotor. The loading cylinder represents the
turbine adjusting mechanism, which may be a distribu-
tor on a Francis or pump turbine, a distributor and/or
runner blades on a bulb or Kaplan unit, or defectors
and/or injectors on Pelton turbines.
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Fig. 1. The time-domain optimal-tuning PID control scheme.

Fig. 2. The hydraulic position test rig.
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The optimal-tuning PID control scheme depicted in
Fig. 1 is implemented using ALSTOM’s DIGIPID 1000
governor with MATLAB and SIMULINK. The main
control aim is to produce a positioning loop that is as
fast as possible without overshoot. Because of the
potential for damage, a key issue is implementation
safety. As a result the decision whether to implement a
set of optimal parameters is left with the operator or
commissioning engineer. Only when the operator is
satisfied with the accuracy of the model and suitability of
the optimal parameters is the main loop controller (in
this case ALSTOM’s DIGIPID 1000 governor) modified.

Because of the restriction on overshoot the specification
is made using a first order response. To effectively assess
the performance of the proposed tuning method, three
experimental cases have been considered. The tracking
model is a first order system with wy = 2.5. The step
change of the reference input is from 67.5 to 82.5mm.

Case A: The parameters of the PID controller were
K, =038, K;=1e—5 and K; = 0.05. This controller
was applied to both the plant and the model. The closed-
loop step responses of the plant and the model are given
in Fig. 3. It is shown clearly that the plant and model
responses are almost the same, which implies that the
model represents the plant very well. But, the plant
response is significantly different from the desired
response.

Case B: The optimal-tuning mechanism was switched
on. The optimal PID parameters were found to be K, =
1.923, K; =2¢—5 and K; = 0.02. This optimal PID
controller was applied to the performance prediction
loop only. The closed-loop response of the model with
the optimal PID controller is very close to the desired
response, as shown in Fig. 4.

Case C: The optimal PID controller (K, = 1.923, K; =
2e — 5and K; = 0.02) was applied to the plant. It can be
seen from Fig. 5 that the closed-loop responses of both
the plant and the model with the optimal PID controller
are very close to the desired response.

3. Frequency-domain optimal-tuning PID control

The design of feedback control systems in industry
using frequency-response methods is more popular than
any other. This is primarily because the frequency-
response method provides good designs in the face of
uncertainty in the plant model and can easily use
experimental information for design purposes.

It is assumed that the ideal transfer function of a PID
controller is given by

K(s) = K, (1 1 Tds>, (©6)
Tl‘S

where K., T; and T, are the PID parameters. Although
the traditional PID design methods give simple tuning
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Fig. 3. Responses of the plant, model and reference model (Case A).

84 T T T T T
82
80|
78
€
E
< 76|
&
=3
Q
o
1]
o 74
@
(=]
72
70|
Reference
68 ~ Desired response |
~  Model output
— Plant output
6 L L L L L
0 0.5 1 15 2 25 3

Time (sec)

Fig. 4. Responses of the plant, model and reference model (Case B).

rules for the controller parameters using either one or
two measurement points of the system frequency-
response, their control performance may not satisfy
the desired requirements. To overcome this disadvan-
tage, an optimal PID controller design is proposed in the
frequency-domain.
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In the frequency-domain, there are two quantities
used to measure the stability margin of the system. One
is the gain margin, which is the factor by which the gain
is less than the neutral stability value. The other is the
phase margin, which is the amount by which the phase
of the system exceeds —180° when the system gain is
unity. The gain and phase margins are also related to the
damping of a system. In addition to the stability of a
design, the system is also expected to meet a speed-of-
response specification like bandwidth. The crossover
frequency, which is the frequency at which the gain is
unity, would be a good measurement in the frequency
domain for the system’s speed of time response. Also,
the larger the value of the magnitude on the low-
frequency asymptote, the lower the steady-state errors
will be for the closed-loop system. This relationship is
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Fig. 5. Responses of the plant, model and reference model (Case C).

very useful in the design of suitable compensation. Thus,
the following performance functions need to be con-
sidered during the design of a PID controller (Liu &
Daley, 1999):

(Ko, Ty, Ta) =
{@Bﬂﬂlemmm)mﬁ’”)
Gu
Dy (K, T}, Tg) =
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where ¢;(K,., T;, Ty), for i = 1,2,3,4, are the normalised
gain-margin, phase-margin, crossover-frequency and the
steady-state error functions with the desired values G,
Py, fu and ey, respectively. Thus, the optimal PID
controller may be obtained by

4
KEITI;,HTJ ; H)l((bl(KL’ T, Tq) — 1), (11)

where w; is the weighting factor. The choice of the
weighting factor is used to balance the effect of the
performance functions to the closed-loop system.
Usually, the weighting factor is chosen by the designer
using the trial and error method. In this paper, all
weight factors are simply set to be 1, i.e. w; =1, for
i=1,2,3 4.

A frequency-domain optimal-tuning PID control
scheme is proposed, as shown in Fig. 6. It mainly
consists of four parts: frequency-response estimation,
desired system specifications, optimal-tuning mechanism
and PID controller. The frequency-response estimated
using frequency-domain identification methods provides
a non-parametric model for the process. The desired

r(t) + /L' e(t) JEZ
i

Excitation
Signal

Frequency-domain Optimal-Tuning
Specifications Mechanism

"9 [ "plant G(s) Yo ,

Frequency Response
Estimation -«

Fig. 6. Frequency-domain optimal-tuning control scheme.
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system specifications include a set of requirements in the
frequency domain: gain margin, phase margin, cross-
over frequency and steady-state error. The optimal-
tuning mechanism uses the process frequency-response
to find optimal parameters for the PID controller so that
the desired system specifications are satisfied.

The operating procedure of the optimal-tuning PID
control is as follows. When the system’s operating-point
or dynamics change, the new process frequency-
response is re-estimated by switching on the excitation
signal that is added to the reference input. Then, using
this updated frequency-response, the tuning mechanism
searches for the optimal parameters for the PID
controller to satisfy the desired system specifications.
Finally, the PID controller is set to the obtained optimal
parameters. In this way, the PID controller may cope
with all operating-points of the system and the closed-
loop system will have similar optimal control perfor-
mance.

The optimal-tuning PID control scheme was applied
to a rotary hydraulic test rig, as shown in Fig. 7, which is
representative of many industrial systems that utilise
fluid power. This is a particularly apposite application
of the method since hydraulic systems are often very
conservatively tuned, due to the fact that the cost of
getting the tuning wrong can be highly destructive and
costly, by virtue of the power available. The rotary
hydraulic test rig comprises an electro-hydraulic servo
control valve driving a fixed displacement hydraulic
motor up to 8000rpm with a maximum operating
pressure of 21 MPa. The motor is coupled by a rigid
shaft to a hydraulic pump of the same displacement as
the motor and a solenoid controlled relief valve is used
to simulate variations in load. This type of hydraulic
system is typically applied to mixer drives, centrifuge
drives and machine tool drives where accurate speed
control with fast response times is required, and large
changes in load can be expected.

Fig. 7. Rotary hydraulic speed control test rig.

The implementation of the frequency-domain opti-
mal-tuning PID control for the hydraulic speed control
system is carried out using the MathWorks Real-Time
Workshop connected to a dSPACE DSP board based
around the TMS320, MATLAB and SIMULINK.
During the experiment, the rotary hydraulic system
was operated in two working conditions: without load
and with load. Also, four PID control rules were
compared, which are Ziegler—Nichols rule (Ziegler &
Nichols, 1942), integral of absolute error rule (Pessen,
1994), symmetric optimum rule (Kessler, 1958; Voda
and Landau, 1995) and optimal-tuning rule proposed in
this section.

Case I (without load): A small periodic multi-sine
excitation signal was directly toped on to the reference
input. Based on the input—output data, the frequency-
response of the system was estimated using the
frequency-domain identification methods. The estimated
magnitude and phase of the system with respect
to frequency are obtained. Following the four PID
tuning rules provides the parameters which are given in
Table 1. The speed responses of the hydraulic motor
using four PID controllers are shown in Fig. 8.

Case II (with load): In this case, there was load on the
hydraulic motor. This means the system dynamics are
different. When the PID parameters for Case I were still
used, two PID controllers failed to stabilise the system,

Table 1
PID parameters for case I
PID rule K. T; Ty
Ziegler-Nichols rule (ZNR) 0.1012  0.0549  0.0137
Integral of absolute error rule (IAER)  0.1180  0.0439  0.0165
Symmetric optimum rule (SOR) 0.0844  0.0994  0.0056
Optimal-tuning rule (OTR) 0.0317  0.0262  0.0385
1.5 - : T T
——— NZR
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Fig. 8. The speed responses of the rotary hydraulic system without
load.
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namely the Ziegler—Nichols and Integral of absolute
error rules. The speed responses using the other two PID
control rules are given in Fig. 9. Note that the symmetric
optimum rule gives a significantly oscillatory response.
Though the optimal-tuning rule does not give a speed
response as good as that for Case I, its performance is
reasonably good and for some practical cases may be
considered acceptable.

Since the system dynamics has changed significantly a
more appropriate response would be to re-tune. The

controllers for this case are given in Table 2. The
performance results of the four PID controllers for this
case are shown in Fig. 10. It is clear that the relative
performance is similar to that displayed for Case I
except the TAER PID controller causes an oscillation in

Table 2
PID parameters for case 11

PID rule K, T; T

periodic multi-sine excitation signal was applied to the Ziegler-Nichols rule (ZNR) 0.1662  0.0606  0.0152
hydraulic system again. The estimated frequency re- Integral of absolute error rule (IAER)  0.1939  0.0485  0.0182
sponse of the load case was re-estimated. In terms of the Symmetric optimum rule (SOR) 0.1268 0.11410.0065
p . ’ Optimal-tuning rule (OTR) 0.0632  0.0372  0.0351
four PID tuning rules, the parameters of the PID
1.4
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Fig. 9. The speed responses of the rotary hydraulic system with load.
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Fig. 10. The speed responses of the rotary hydraulic system with load.
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the low speed range, which shows the system has non-
linearities.

4. Multiobjective optimal-tuning PI control for a gasifier

Integrated gasification combined cycle (IGCC) power
plants are being developed around the world to provide
environmentally clean and efficient power generation
from coal. To provide environmentally clean and efficient
power generation from coal, a gasifier plays an important
role in IGCC power plants. The gasifier is based on the
spouted fluidised bed gasification concept (originally
developed by British Coal CTDD) and can be considered
as a reactor where coal is gasified with air and steam. In
the ALSTOM benchmark challenge on gasifier control
(Dixon, Pike, & Donne, 1998), the gasifier, as shown in
Fig. 11, is a non-linear multivariable system, having four
inputs (coal, limestone, air and steam) and four outputs
(pressure, temperature, bed mass and gas quality) with a
high degree of cross coupling between them (Donne,
Dixon, Pike, Odeku, & Ricketts, 1998). The aim of the
benchmark challenge is to design a controller to satisfy a
set of specifications on the system outputs, inputs and
input rates when a step pressure disturbance is applied to
the system, based on a linearised model of the gasifier at
the 100% load operating point. In addition, the challenge
requires that the controller also be evaluated on models
representing the gasifier at 50% and 0% load operating
points and on rejection to a sine-wave/step pressure
disturbance applied to the gasifier at the above three
operating points.

There are a wide variety of control techniques which
can be used to design a controller for the gasifier.
Here, a multiobjective optimally-tuning PI controller is

( ~ ) FUELGAS

-

) 2
-1 :b'
%

COAL & -

LIMESTONE=»="

STEAM

Fig. 11. The gasifier.

considered for the gasifier. A set of multiobjective
performance criteria based on the specifications for
the system outputs, inputs and input rates are
formulated as functions of the parameters of
the multi-input multi-output (MIMO) PI controller.
The controller is designed using multiobjective optimi-
sation methods and also evaluated on three linearised
gasifier models.

Since the gasifier outputs, inputs and input rates
are constrained, a set of performance functions should
be considered during the design of the controller.
For this purpose, the following performance functions
of the me-input r-output gasifier with n states are
introduced.

il

P(K) ==, i=12,..,r, (12)
Yi
il .
b (K)==L, j=12..m, (13)
Uj
et |
¢r+m+k(K) = 5_kd’ k= 1,2, Lo, m, (]4)
uk
Griomir (K) =1+ max {Re(4)} + &, (15)

where J; is the ith output fluctuation and 4; the jth input
fluctuation, the parameter vector K denotes the para-
meters of the PI controller, 4; is the jth poles of the
closed-loop system, Re(.) denotes the real part of a
number, the positive real number & represents the
requirements on the closed-loop poles, y¢, uf, duf are
the upper bounds on the output fluctuation, input
fluctuation and input rates, respectively. According to
the requirements on the gasifier, the following multi-
objective performance criteria should be satisfied:

p(K)<1, i=12...,r+2m+ L (16)

If the above inequalities are satisfied, then the problem
is solved. Thus, the design problem is to find a PI
controller to make (16) hold. If the above inequali-
ties are met, then the problem is solved. Clearly, the design
problem is to find a PID controller to make (16) hold.
There are a number of methods to solve the performance
criteria problem (16), for example, the minimax optimisa-
tion method (Gill et al., 1981) and the method of
inequalities (Zakian & Al-Naib, 1973; Liu, 1992).

The linearised model of the gasifier at the 100% load
operating point was used for the gasifier control design.
This model has twenty-five state variables (n = 25), four
control inputs (m = 4) and the four outputs (r = 4). The
disturbance d on the gasifier is the sink pressure which
represents the pressure upstream of the gas turbine.
Thus, the MIMO PI controller is a 4 x 4 PI controller,
which consists of 16 P-parameters and 16 I-parameters.
Also, there are 13 performance function criteria which
need to be met during the controller design.
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Fig. 12. Output responses to sine wave disturbance for 100% load.

Based on the linearised model of the gasifier at
the 100% load operating points with a sine-wave
pressure disturbance, all 13 performance function
criteria were successfully satisfied by the 4x4
PI controller using the multiobjective optimisation
algorithms provided by the optimisation toolbox
for use with MATLAB (Grace, 1994). The outputs
(fuel gas calorific value (CVGAS), bed mass (MASS),
fuel gas pressure (PGAS) and fuel gas temperature
(TGAS) of the gasifier at 100% load are shown in
Fig. 12, where the dot lines represent the upper bounds
and lower bounds of the output constraints. Clearly, the
outputs of the gasifier are within the required bounds
and have a good rejection to the sine-wave pressure
disturbance.

The same controller that was designed for the
100% load operating point was also applied to
the linearised models at the 50% load operating points.
All performance requirements of the gasifier at
50% load are satisfied as well. But, some performance
criteria at 0% load are violated by use of this controller.
Thus, to cope with the 0% load case, the multi
objective optimal-tuning mechanism was switched on
again to adapt the change in operating point of the
gasifier. The new optimal PI parameters resulted in
similar control performance results as those at 100%
load.

5. Conclusions

This paper has considered three optimal PID con-
troller design schemes: the time-domain optimal-tuning
PID control, the frequency-domain optimal-tuning PID
control and the multiobjective optimal-tuning PID
control. These schemes mainly consist of four basic
parts: model estimation, a definition of desired system
specifications, an optimal-tuning mechanism and a PID
controller. Different kinds of performance functions for
the three control schemes were employed. These schemes
have been successfully applied to three industrial
systems: the hydraulic position control system, the
rotary hydraulic speed control system and the gasifier.
The experimental results have shown that the optimal-
tuning PID controller can significantly improve system
performance, and copes well with changes in the process
dynamics.
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